
1

presented by

A Crash Course in Supercomputing

© 2004-2008 Rebecca Hartman-Baker. Reproduction permitted for
non-commercial, educational use only.

Outline

I.  Parallelism

II.  Supercomputer Architecture

III.  Makefiles and Batch Scripts

IV.  MPI

V.  OpenMP

VI.  Debugging and Performance Evaluation

VII.  Example: Computing π in Parallel

2

I. PARALLELISM

Parallel Lines by Blondie. Source: http://xponentialmusic.org/blogs/885mmmm/
2007/10/09/403-blondie-hits-1-with-heart-of-glass/

I. Parallelism

• Concepts of parallelization

•  Serial vs. parallel

•  Parallelization strategies

3

Parallelization Concepts

• When performing task, some subtasks depend on one
another, while others do not

•  Example: Preparing dinner
- Salad prep independent of lasagna baking
- Lasagna must be assembled before baking

•  Likewise, in solving scientific problems, some tasks
independent of one another

Serial vs. Parallel

•  Serial: tasks must be performed in sequence

•  Parallel: tasks can be performed independently in any order

4

Serial vs. Parallel: Example

•  Example: Preparing dinner
- Serial tasks: making

sauce, assembling
lasagna, baking
lasagna; washing
lettuce, cutting
vegetables, assembling
salad
- Parallel tasks: making

lasagna, making salad,
setting table

Serial vs. Parallel: Example

•  Could have several chefs,
each performing one parallel
task

•  This is concept behind
parallel computing

5

Parallel Algorithm Design: PCAM

•  Partition: Decompose problem into fine-grained tasks
to maximize potential parallelism

• Communication: Determine communication pattern
among tasks

•  Agglomeration: Combine into coarser-grained tasks, if
necessary, to reduce communication requirements or
other costs

• Mapping: Assign tasks to processors, subject to
tradeoff between communication cost and
concurrency

(taken from Heath: Parallel Numerical Algorithms)

Discussion: Jigsaw Puzzle*

•  Suppose we want to do 5000
piece jigsaw puzzle

•  Time for one person to
complete puzzle: n hours

• How can we decrease wall time
to completion?

* Thanks to Henry Neeman

6

Discussion: Jigsaw Puzzle

•  Add another person at the
table
- Effect on wall time
- Communication
- Resource contention

•  Add p people at the table
- Effect on wall time
- Communication
- Resource contention

Discussion: Jigsaw Puzzle

•  What about: p people, p
tables, 5000/p pieces each?

•  What about: one person
works on river, one works on
sky, one works on mountain,
etc.?

7

II. ARCHITECTURE

Image: Louvre Abu Dhabi – Abu Dhabi, UAE, designed by Jean Nouvel, from http://www.inhabitat.com/
2008/03/31/jean-nouvel-named-2008-pritzker-architecture-laureate/

II. Supercomputer Architecture

• What is a supercomputer?

• Conceptual overview of architecture

Cray
(1976)

IBM Blue
Gene
(2005)

Architecture of IBM Blue
Gene

8

What Is a Supercomputer?

•  “The biggest, fastest computer right this minute.” --
Henry Neeman

• Generally 100-10,000 times more powerful than PC

•  This field of study known as supercomputing, high-
performance computing (HPC), or scientific
computing

•  Scientists use really big computers to solve really
hard problems

SMP Architecture

• Massive memory, shared by multiple processors

•  Any processor can work on any task, no matter its
location in memory

•  Ideal for parallelization of sums, loops, etc.

9

Cluster Architecture

• CPUs on racks, do computations (fast)

• Communicate through myrinet connections (slow)

• Want to write programs that divide computations
evenly but minimize communication

State-of-the-Art Architectures

•  Today, hybrid architectures gaining acceptance

• Multiple {dual, quad}-core nodes, connected to other
nodes by (slow) interconnect

• Cores in node share memory (like small SMP
machines)

• Machine appears to follow cluster architecture (with
multi-core nodes rather than single processors)

•  To take advantage of all parallelism, use MPI (cluster)
and OpenMP (SMP) hybrid programming

10

III. MAKEFILES AND
BATCH SCRIPTS
Fortune cookie-shaped USB drives available from http://vavolo.com/freshlybakedusb.asp

Outline

• Makefiles

•  Batch Scripts

11

Makefiles

• Motivation

• Makefile concepts

•  Tips

• Resources

Motivation

•  Easy to compile program if only one file:
 gcc -o program myprog.c

•  (Could be) Easy to compile program if multiple files:
gcc -c *.c; gcc -o program *.o

•  But what if files in multiple directories? What if using
libraries? What if special instructions for certain files?

•  Also, what if we made one tiny change in one file, and
we had 1000 files in program? We would have to wait
for hours for program to compile!

12

Makefile Concepts

•  Makefile: File containing sets of rules for compilation of program(s)

•  To use, create file called Makefile with these rules, then type
make (plus target)

•  Basic structure of a rule:

 target … : dependencies …	

	
 	
 	
 command	

	
 	
 	
 …	

	
 	
 	
 …

•  Make will manage compilation and recompile only objects that are
older than respective source file

Makefile Concepts

•  General format of Makefile:
- First, definitions of variables, e.g.
 CC	
 	
 = gcc	

	
 LIB_LIST	
 = -lm -lmpich -lpthread	

	
 OBJS	
 	
 = myprog.o mysub1.o mysub2.o
- Rules, e.g.
	
 prog:	
 $(OBJS)	

	
 	
 	
 $(CLINKER) $(OPTFLAGS) -o prog \	

	
 	
 	
 	
 $(OBJS) $(LIB_DIR) $(LIBS)

•  In rule, second line (and subsequent lines) starts with tab. Must
be tab, not spaces!

13

Sample Makefile (1)

CC	
	
 	
 = gcc	

FC	
	
 	
 = g77	

CLINKER	
 = gcc	

OPTFLAGS 	
 = -O	

INCLUDE_DIR	
 = -I/opt/mpich/include	

LIB_DIR	
 = -L/opt/mpich/lib	

LIB_LIST	
 = -lmpich -lpthread	

CFLAGS	
	
 = $(OPTFLAGS)	

LIBS	
 	
 = $(LIB_LIST) -lm	

# this is a comment	

OBJS	
 	
 = myprog.o mysub1.o mysub2.o \	

	
 	
 	
 mysub3.o mysub4.o	

EXEC	
 	
 = prog	

Sample Makefile (2)

prog:	
 $(OBJS)	

	
 	
 $(CLINKER) $(OPTFLAGS) -o $(EXEC) \ 	

	
 	
 	
 $(OBJS) $(LIB_DIR) $(LIBS)	

clean: 	

	
 	
 /bin/rm -f *.o *~ $(EXEC)	

.c.o:	

	
 	
 $(CC) $(INCLUDE_DIR) $(CFLAGS) -c $*.c	

.f.o:	

	
 	
 $(FC) -c $*.f	

14

Tips

•  Error messages from make cryptic; common source of
error is using spaces instead of tabs

•  man make gives good explanation of makefiles

•  In above makefile, doing make clean removes all
object files and gives “clean slate”

• Make will issue message ‘Nothing to be done’ or
‘Target up to date’ if no source files newer than object
files

Makefile Resources

• GNU make http://theory.uwinnipeg.ca/gnu/make/
make_toc.html

• Make -- a Tutorial http://www.eng.hawaii.edu/Tutor/
Make/

• Oram, Andrew, and Steve Talbott. Managing Projects
with make, O’Reilly & Associates, 1991.

15

Batch Scripts

•  Batch System and Scheduling

• Concepts

• Useful commands

•  Further help

Batch System and Scheduling

•  Supercomputer: powerful computer consisting of
many interlinked CPUs

• Users competing for computational resources

• How to launch and schedule jobs fairly?

•  Job can run without user presence

• Must not allow one user to hog resources

16

Batch System

•  Batch system accepts input jobs into queue and
launches them when resources available

• Many machines use batch system PBS (Portable
Batch System)

•  PBS developed for NASA in 1990s

Scheduler

(source: www.the-hawaii-vacation-guide.com)

•  Scheduler decides when jobs can be run based on
scheduling policies, e.g. user priority, length of job,
number of nodes requested, length of time in queue

• Many machines use Maui
Scheduler

• Maui Scheduler extensively
developed, supported by
large segment of computation
community including
U.S. Dept. of Energy, NCSA

17

Concepts

•  Limits for walltime and number of processors, so if
request exceeds limits, job automatically rejected

•  Scheduler rules complicated, but generally, “smaller”
jobs run first

•  Size of job is function of number of processors and
estimated time

•  You provide info about number of processors you
want and estimate of time job will run

Concepts

•  Strategies:
- Like inverse of “The Price Is Right,” give lowest

estimate possible, without going under true
time needed (always good strategy)
- Use fewer processors if possible (usually good

strategy)

•  If you reach end of estimated time, PBS will terminate
your job!

• Write script that tells PBS what to do when job is
launched

18

Concepts

•  Shell Script format:
- First, a line invoking the scripting language:

 #!/bin/csh
- Next, embedded PBS commands, e.g.

 #PBS -l walltime=00:10:00,nodes=2:ppn=2
	
 #PBS -q workq
 (the shell script interprets these as comments, but
PBS understands they are PBS commands)
- Then, environment variable initialization, e.g.

 setenv MYMAINDIR /home/hqi/hello (sets
variable MYMAINDIR to /home/hqi/hello)
 setenv PROG $MYMAINDIR/prog (sets PROG to /
home/hqi/hello/prog)

Concepts

•  Shell script format (continued):
- Then, shell script and regular Linux commands, e.g.,
if (-e $OUTF) mv $OUTF $OUTF.old
 (meaning that if file called $OUTF exists, rename it
to $OUTF.old)
- Finally, run job:

 mpirun -np $NP $PROG < $INFILE > $OUTF
•  To launch job:
- Make script executable*: chmod u+x myscript
- qsub myscript	

*Not necessary on some systems

19

Useful Commands (PBS)

•  #PBS -l walltime=hh:mm:ss,nodes=n:ppn=p
This tells PBS how much walltime you request (where
hh:mm:ss replaced by appropriate number of hours,
minutes, and seconds), how many dual processor
nodes you want (replace n with appropriate number),
and how many processors per node (1 or 2)

•  #PBS -q workq Which queue to use (in this case,
queue called workq)

•  #PBS -V Export all environment variables to batch
job (good practice to do this)

•  #PBS -m be Sends you e-mail at beginning and end
of job

Useful Commands (Shell Scripting)

•  set echo Print out commands as they are executed
(useful for debugging script)

•  setenv A B Sets environment variable A to B

•  $A value of A

•  mpirun -np $NP $PROG < $INPUT > $OUTPUT
mpirun (sometimes mpiexec, or on proprietary
systems, aprun, poe, etc.) is executable that
launches parallel jobs on multiple processors; -np is
flag indicating number of processors used in run
*NOTE: some implementations do not require

input redirection (<)

20

Nice Job Script for Institutional Cluster
(1)

#PBS -S /bin/bash	

#PBS -V	

#PBS -j oe	

#PBS -m ae	

#PBS -M hartmanbakrj@ornl.gov	

#PBS -N loadbal	

#PBS -l walltime=00:10:00,nodes=2:ppn=2	

#PBS -q workq	

echo “Current working directory is `pwd`”	

echo “Node file: $PBS_NODEFILE : “	

echo “------”	

cat $PBS_NODEFILE	

echo “------”	

NUM_PROCS=`/bin/awk ‘END {printNR}’ $PBS_NODEFILE`	

Nice Job Script for Institutional Cluster
(2)

EXEC=${PBS_O_WORKDIR}/myprog	

INPUT_FILE=${PBS_O_WORKDIR}/prog_input.dat	

echo “------”	

cat $INPUT_FILE	

echo “------”	

echo “Running on $NUM_PROCS processors.”	

echo “------”	

echo “Starting run at: `date`”	

echo “------”	

mpiexec $EXEC $INPUT_FILE	

echo “------”	

echo “Ending run at: `date`”

21

Further Help

• NCSA Cobalt Documentation: Running Jobs http://
www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
SGIAltix/Doc/Jobs.html

•  The C Shell tutorial http://www.eng.hawaii.edu/Tutor/
csh.html

• DuBois, Paul. Using csh & tcsh, O’Reilly &
Associates, 1995.

• Newham, Cameron and Bill Rosenblatt. Learning the
bash Shell, O’Reilly & Associates, 1998.

Bibliography/Resources

•  About OpenPBS http://www.openpbs.org/about.html

• Maui Scheduler http://www.supercluster.org/maui/

22

IV. MPI
MPI also stands for Max Planck Institute for Psycholinguistics. Source: http://www.mpi.nl/WhatWeDo/istitute-
pictures/building

IV. MPI

•  Introduction to MPI

•  Parallel programming concepts

•  The Six Necessary MPI Commands

•  Example program

23

Introduction to MPI

•  Stands for Message Passing Interface

•  Industry standard for parallel programming (200+ page
document)

•  MPI implemented by many vendors; open source
implementations available too
- ChaMPIon-PRO, IBM, HP, Cray vendor implementations
- MPICH, LAM-MPI, OpenMPI (open source)

•  MPI function library is used in writing C, C++, or Fortran
programs in HPC

•  MPI-1 vs. MPI-2: MPI-2 has additional advanced functionality
and C++ bindings, but everything learned today applies to both
standards

Parallelization Concepts

•  Two primary programming paradigms:
- SPMD (single program, multiple data)
- MPMD (multiple programs, multiple data)

• MPI can be used for either paradigm

24

SPMD vs. MPMD

•  SPMD: Write single program that will perform same
operation on multiple sets of data
- Multiple chefs baking many lasagnas
- Rendering different frames of movie

• MPMD: Write different programs to perform different
operations on multiple sets of data
- Multiple chefs preparing four-course dinner
- Rendering different parts of movie frame

• Can also write hybrid program in which some
processes perform same task

The Six Necessary MPI Commands

•  int MPI_Init(int *argc, char **argv)	

•  int MPI_Finalize(void)	

•  int MPI_Comm_size(MPI_Comm comm, int *size)	

•  int MPI_Comm_rank(MPI_Comm comm, int *rank)	

•  int MPI_Send(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)	

•  int MPI_Recv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)	

25

Initiation and Termination

•  MPI_Init(int *argc, char **argv) initiates
MPI
- Place in body of code after variable

declarations and before any MPI commands

•  MPI_Finalize(void) shuts down MPI
- Place near end of code, after last MPI command

Environmental Inquiry

•  MPI_Comm_size(MPI_Comm comm, int *size)
- Find out number of processes
- Allows flexibility in number of processes used

in program

•  MPI_Comm_rank(MPI_Comm comm, int *rank)
- Find out identifier of current process
- 0 ≤ rank ≤ size-1

26

Message Passing: Send

•  MPI_Send(void *buf, int count,
MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm)
- Send message of length count bytes and

datatype datatype contained in buf with tag
tag to process number dest in communicator
comm
- E.g. MPI_Send(&x, 1, MPI_DOUBLE,
manager, me, MPI_COMM_WORLD)	

Message Passing: Receive

•  MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Status *status)	

- Receive message of length count bytes and

datatype datatype with tag tag in buffer buf
from process number source in communicator
comm and record status status
- E.g. MPI_Recv(&x, 1, MPI_DOUBLE,
source, source, MPI_COMM_WORLD,
&status)	

27

Message Passing

• WARNING! Both standard send and receive functions
are blocking

•  MPI_Recv returns only after receive buffer contains
requested message

•  MPI_Send may or may not block until message
received (usually blocks)

• Must watch out for deadlock

Deadlocking Example (Always)

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

 int me, np, q, sendto;	

 MPI_Status status;	

 MPI_Init(&argc, &argv);	

 MPI_Comm_size(MPI_COMM_WORLD, &np);	

 MPI_Comm_rank(MPI_COMM_WORLD, &me);	

 if (np%2==1) return 0;	

 if (me%2==1) {sendto = me-1;}	

 else {sendto = me+1;}	

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 	

	
 	
 sendto, q, sendto);	

 MPI_Finalize();	

 return 0;	

}	

28

Deadlocking Example (Sometimes)

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

 int me, np, q, sendto;	

 MPI_Status status;	

 MPI_Init(&argc, &argv);	

 MPI_Comm_size(MPI_COMM_WORLD, &np);	

 MPI_Comm_rank(MPI_COMM_WORLD, &me);	

 if (np%2==1) return 0;	

 if (me%2==1) {sendto = me-1;}	

 else {sendto = me+1;}	

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 	

	
 	
 sendto, q, sendto);	

 MPI_Finalize();	

 return 0;	

}	

Deadlocking Example (Safe)

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

 int me, np, q, sendto;	

 MPI_Status status;	

 MPI_Init(&argc, &argv);	

 MPI_Comm_size(MPI_COMM_WORLD, &np);	

 MPI_Comm_rank(MPI_COMM_WORLD, &me);	

 if (np%2==1) return 0;	

 if (me%2==1) {sendto = me-1;}	

 else {sendto = me+1;}	

 if (me%2 == 0) {	

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

	
 } else {	

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

 }	

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q, sendto);	

 MPI_Finalize();	

 return 0;	

}	

29

Explanation: Always Deadlock Example

•  Logically incorrect

• Deadlock caused by blocking MPI_Recvs

•  All processes wait for corresponding MPI_Sends to
begin, which never happens

Explanation: Sometimes Deadlock
Example

•  Logically correct

• Deadlock could be caused by MPI_Sends competing
for buffer space

• Unsafe because depends on system resources

•  Solutions:
- Reorder sends and receives, like safe example,

having evens send first and odds send second
- Use non-blocking sends and receives or other

advanced functions from MPI library (beyond
scope of this tutorial)

30

Bibliography/Resources: MPI

•  Snir, Marc, Steve W. Otto, Steven Huss-Lederman, David W.
Walker, and Jack Dongarra. (1996) MPI:The Complete
Reference. Cambridge, MA: MIT Press. (also available at http://
www.netlib.org/utk/papers/mpi-book/mpi-book.html)

•  MPICH Documentation http://www-unix.mcs.anl.gov/mpi/mpich/

•  C, C++, and FORTRAN bindings for MPI-1.2 http://www.lam-
mpi.org/tutorials/bindings/

V. OPENMP
Source: http://xkcd.com/225/

31

V. OpenMP

•  About OpenMP
•  OpenMP Directives
- Parallel
- Loop
- Sections
- Synchronization

•  Data Scope

•  Runtime Library Routines

•  OpenMP Environment Variables

•  Running Applications with OpenMP

About OpenMP

•  Industry-standard shared memory programming
model

• Developed in 1997

• OpenMP Architecture Review Board (ARB)
determines additions and updates to standard

32

Advantages to OpenMP

•  Parallelize small parts of application, one at a time
(beginning with most time-critical parts)

• Can express simple or complex algorithms

• Code size grows only modestly

•  Expression of parallelism flows clearly, so code is
easy to read

•  Single source code for OpenMP and non-OpenMP –
non-OpenMP compilers simply ignore OMP directives

OpenMP Programming Model

•  Application Programmer Interface (API) is
combination of
- Directives
- Runtime library routines
- Environment variables

•  API falls into three categories
- Expression of parallelism (flow control)
- Data sharing among threads (communication)
- Synchronization (coordination or interaction)

33

Parallelism

•  Shared memory, thread-based parallelism

•  Explicit parallelism (parallel regions)

•  Fork/join model

Source: https://computing.llnl.gov/tutorials/openMP/

OpenMP Directives: Parallel

•  A block of code executed by multiple threads

•  Syntax:
#pragma omp parallel private(list)\
shared (list)

{
 /* parallel section */
}

34

Simple Example

#include <stdio.h>

#include <omp.h>

int main (int argc, char *argv[]) {

 int tid;

 printf(“Hello world from threads:\n”);

 #pragma omp parallel private(tid)

 {

 tid = omp_get_thread_num();

 printf(“<%d>\n”, tid);

 }

 printf(“I am sequential now\n”);

 return 0;

}

Output (Simple Example)

Output 1
Hello world from
threads:

<0>
<1>
<2>
<3>
<4>
I am sequential now

Output 2
Hello world from
threads:

<1>
<2>
<0>
<4>
<3>
I am sequential now

Order of execution is scheduled by OS!!!!!!

35

OpenMP Directives: Loop

•  Iterations of the loop following the directive are executed in
parallel

•  Syntax:
#pragma omp for schedule(type [,chunk]) \
private(list) shared(list) nowait

{

 /* for loop */

}
- type = {static, dynamic, guided, runtime}
- If nowait specified, threads do not synchronize at

end of loop

OpenMP Directives: Loop Scheduling

•  Default scheduling determined by implementation
•  Static
- ID of thread performing particular iteration is

function of iteration number and number of threads
- Statically assigned at beginning of loop
- Load imbalance may be issue if iterations have

different amounts of work
•  Dynamic
- Assignment of threads determined at runtime

(round robin)
- Each thread gets more work after completing

current work
- Load balance is possible

36

Loop: Simple Example

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main () {

 int i, chunk;
 float a[N], b[N], c[N];
 /* Some initializations */

 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
 chunk = CHUNKSIZE;

 #pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait

 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of parallel section */

 return 0;
}

OpenMP Directives: Sections

•  Non-iterative work-sharing construct
•  Divide enclosed sections of code among threads

•  Section directives nested within sections directive

•  Syntax
#pragma omp sections
{
 #pragma omp section
 /* first section */
 #pragma omp section
 /* next section */
}

37

Sections: Simple Example

#include <omp.h>
#define N 1000

int main () {

 int i;

 float a[N], b[N], c[N],
d[N];

 /* Some initializations
*/

 for (i=0; i < N; i++) {

 a[i] = i * 1.5;

 b[i] = i + 22.35;

 }

 #pragma omp parallel shared(a,b,c,d) \
private(i)

 {

 #pragma omp sections nowait

 {

 #pragma omp section

 for (i=0; i < N; i++)

 c[i] = a[i] + b[i];

 #pragma omp section

 for (i=0; i < N; i++)

 d[i] = a[i] * b[i];

 } /* end of sections */

 } /* end of parallel section */

return 0;

}

OpenMP Directives: Synchronization

•  Sometimes, need to make sure threads execute regions of
code in proper order
- Maybe one part depends on another part being

completed
- Maybe only one thread need execute a section of

code
•  Critical
- Specifies section of code that must be executed by

only one thread at a time
- Syntax

#pragma omp critical [name]
- Names are global identifiers – critical regions with

same name are treated as same region

38

OpenMP Directives: Synchronization

•  Barrier
- Synchronizes all threads: thread reaches barrier and

waits until all other threads have reached barrier, then
resumes executing code following barrier
- Syntax

#pragma omp barrier
- Sequence of work-sharing and barrier regions

encountered must be the same for every thread
•  Single
- Enclosed code is to be executed by only one thread
- Useful for thread-unsafe sections of code (e.g., I/O)
- Syntax

#pragma omp single

Variable Scope

•  By default, all variables shared except
- Certain loop index values – private by default
- Local variables and value parameters within

subroutines called within parallel region –
private
- Variables declared within lexical extent of

parallel region – private

39

Default Scope Example
void caller(int *a, int n) {

int i,j,m=3;

#pragma omp parallel for

for (i=0; i<n; i++) {

 int k=m;

 for (j=1; j<=5; j++) {

 callee(&a[i], &k, j);

 }

}

Void callee(int *x, int *y, int
z) {

 int ii;

 static int cnt;

 cnt++;

 for (ii=1; ii<z; ii++) {

 *x = *y + z;

 }

}

Var Scope Comment
a shared Declared outside parallel construct

n shared same

i private Parallel loop index

j shared Sequential loop index

m shared Declared outside parallel construct

k private Automatic variable/parallel region

x private Passed by value

*x shared (actually a)

y private Passed by value

*y private (actually k)

z private (actually j)

ii private Local stack variable in called
function

cnt shared Declared static (like global)

OpenMP Runtime Library Routines

•  void omp_set_num_threads(int num_threads)
- Sets number of threads used in next parallel region
- Must be called from serial portion of code

•  int omp_get_num_threads()
- Returns number of threads currently in team

executing parallel region from which it is called

•  int omp_get_thread_num()
- Returns rank of thread
- 0 ≤ omp_get_thread_num() <
omp_get_num_threads()

40

OpenMP Environment Variables

•  Set environment variables to control execution of
parallel code

• OMP_SCHEDULE
- Determines how iterations of loops are

scheduled
- E.g., setenv OMP_SCHEDULE ”guided, 4”

• OMP_NUM_THREADS
- Sets maximum number of threads
- E.g., setenv OMP_NUM_THREADS 4

Running Programs with OpenMP
Directives

• May need special compiler options (e.g., for PGI
compilers, use -mp=nonuma flag)

• May need to set environment variables in batch
scripts (e.g., on Jaguar, include definition of
OMP_NUM_THREADS in script)

•  Example: to run on 64 dual-core nodes on Jaguar,
add the following to your script:
export OMP_NUM_THREADS=2
aprun –n 128 –N 1 myprog

41

Bibliography/Resources: OpenMP

• Chapman, Barbara, Gabrielle Jost, and Ruud van der
Pas. (2008) Using OpenMP, Cambridge, MA: MIT
Press.

•  Kendall, Ricky A. (2007) Threads R Us, http://
www.nccs.gov/wp-content/training/
scaling_workshop_pdfs/threadsRus.pdf

•  LLNL OpenMP Tutorial, https://computing.llnl.gov/
tutorials/openMP/

VI. DEBUGGING AND
PERFORMANCE
EVALUATION

Source: http://www.uky.edu/Ag/Entomology/ythfacts/4h/unit1/i&tr.htm

42

VI. Debugging and Performance
Evaluation

• Common errors in parallel programs

• Debugging tools

• Overview of benchmarking and performance
measurements

Common Errors

•  Program hangs
- Send has no corresponding receive (or vice versa)
- Send/receive pair do not match in source/recipient or tag
- Condition you believe should occur does not occur

•  Segmentation fault
- Trying to access memory you are not allowed to access/

memory you should not have been allowed to access has
been altered (e.g. array index out-of-bounds, uninitialized
pointers, using non-pointer as pointer)
- Trying to access a memory location in a way that is not

allowed (e.g. overwrite a read-only location)

43

Debugging Tools

• Debugging parallel codes is particularly difficult

•  Problem: figuring out what happens on each node

•  Solutions:
- Print statements, I/O redirection into files

belonging to each node
- Debuggers compatible with MPI

Print Statement Debugging Method

•  Each processor dumps print statements to stdout or
into individual output files, e.g. log.0001, log.
0002, etc.

•  Advantage: easy to implement, independent of
platform or available resources

• Disadvantage: time-consuming, extraneous
information in log files

44

MPI-Compatible Debuggers

•  TotalView
- Commercial product, easy-to-use GUI
- Installed on production systems such as Crays, probably

not installed on local machines

•  Free debuggers + mpirun
- Use mpirun command and specify your favorite

debugger, e.g. mpirun -dbg=ddd -np 4 ./myprog
- This option available with MPICH and most other MPI

implementations
- Not as “pretty” as TotalView but it gets job done

Benchmarking and Performance

•  Efficiency

•  Scalability

•  Performance modeling

•  Example

45

Efficiency

• How well does parallel program perform compared to
serial program (or parallel program on 1 processor)?

•  E = efficiency, N = # processors, Tp = time for p
processors

€

EN =
T1
NTN

Efficiency

•  Ideally, EN = 1; realistically, EN < 1.

•  Factors influencing efficiency
- Load balance (evenly distribute work for better

efficiency)
- Concurrency (minimize idle time on all

processors)
- Overhead (minimize work that serial

computation would not do, e.g. communication)

46

Scalability: Speedup

• How well does parallel program take advantage of
additional processors?

•  S = speedup, N = # processors, Tp = time for p
processors

€

SN =
T1
TN

Determining Scalability of Program

• How to measure scalability
- Fixed problem size, measure TN for different N’s
- Increase problem size proportional to N,

compare TN

• Repeat performance runs at least 3 times for each N
(ideally >5 times)

•  Plot on log-log graph; slope of line determines
scalability

47

Scalability

1

10

100

1000

1 2 4 8 16 32 64 128 256

Number of Processors

W
a
ll
 T

im
e
 (

m
in

u
te

s
)

Ideal (fixed problem size)

Realistic (fixed problem size)

Ideal (growing problem size)

Realistic (growing problem size)

Performance Evaluation

• Create performance model

•  Examine parallel algorithm and figure out which parts
fit in each category

•  Perform least-squares fit with scalability data €

TN = TN
communication + TN

computation + TN
serial

48

Benchmarking and Performance:
Example

•  Example of real program: three-tier parallel program
from my dissertation

•  The problem: Compute diffusion function
- Compute f matrices, each matrix and each

matrix entry independent of all others
- Perform matrix-vector multiply for each matrix

and take norm of result
- Take weighted average of f results

Example: Schematic Overview of
Algorithm

49

Example: Categorize Algorithm

Communication Computation Serial (Idle)
Manager: send information
about computation to All

Manager: Initialize

All: Compute matrix
entries using quadrature

Workers: Send matrix
entries to Drivers

Drivers: Compute matrix/
vector multiply and norm

(Worker processes are idle)

Drivers: Send results to
manager

Compute final function
evaluation (All processes
except Manager are idle)

Tim
e

Example: Performance Evaluation

•  N = # processors

•  d = # drivers

•  f = stencil size

•  P(N, f) = max # entries
computed by 1 proc

•  ts = message startup time

•  tquad = avg time to compute one
entry

•  tinit = time spent by manager in
serial

For three-tier algorithm,
€

TN = TN
communication + TN

computation + TN
serial

€

TN = (3N + d −1)ts + P(N, f)tquad + tinit

50

Example: Performance Evaluation

•  Using least squares solve, we obtain

€

TN = (3N + d −1) 3.81077 ×10−3 + P(N, f) 10.3311+ 3.91500 sec

Bibliography/Resources: Programming
Concepts and Debugging

• Heath, Michael T. (2006) Notes for CS554: Parallel
Numerical Algorithms, http://www.cse.uiuc.edu/cs554/
notes/index.html

• MPI Deadlock and Suggestions http://
www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
CommonDoc/MessPass/MPIDeadlock.html

•  TotalView Tutorial http://www.llnl.gov/computing/
tutorials/totalview/

•  Etnus TotalView page http://www.etnus.com/

51

Bibliography/Resources: Benchmarking
and Performance

• Heath, Michael T. (2006) Notes for CS554: Parallel
Numerical Algorithms, http://www.cse.uiuc.edu/cs554/
notes/index.html

• Hartman-Baker, Rebecca J. (2005) The Diffusion
Equation Method for Global Optimization and Its
Application to Magnetotelluric Geoprospecting,
Department of Computer Science, University of Illinois
at Urbana-Champaign, http://www.cs.uiuc.edu/
research/techreports.php?report=UIUCDCS-
R-2005-2578

VII. PROGRAMMING
PROJECT
Source: http://www.ehow.com/how_2141082_best-berry-pie-ever.html

52

VII. Programming Project

•  Project Description

•  Programming Concepts

•  Parallelization Strategies

Project Description

• We want to compute π

• One method: method of darts*

• Ratio of area of square to area of inscribed circle
proportional to π

53

Method of Darts

•  Imagine dartboard with circle of radius R inscribed in square

•  Area of circle

•  Area of square
•  Area of circle
 Area of square

€

= π R2

€

= 2R()2 = 4R2

€

=
π R2

4R2
=
π
4

Method of Darts

•  So, ratio of areas proportional to π

•  How to find areas?
- Suppose we threw darts (completely

 randomly) at dartboard
- Could count number of darts landing in circle and total

number of darts landing in square
- Ratio of these numbers gives approximation to ratio of

areas
- Quality of approximation increases with number of darts

•  π = 4 × # darts inside circle
 # darts thrown

54

Method of Darts

• Okay, Rebecca, but how in the world do we simulate
this experiment on computer?
- Decide on length R
- Generate pairs of random numbers (x, y) s.t.

 -R ≤ x, y ≤ R
- If (x, y) within circle (i.e. if (x2+y2) ≤ R2), add one

to tally for inside circle
- Lastly, find ratio

Programming Concepts

• Random numbers: in C language, function int rand
(void) generates “pseudo-random integer in range
0 to RAND_MAX”

•  RAND_MAX: C-language constant denoting maximum
random number generated; actual value varies with
implementation

• Divide “random” number by maximum random
number to get a number between 0 and 1*	

55

Programming Concepts

•  Type cast and coercion:
- int a = rand(); double b = a/RAND_MAX;

•  b equals 0
- int a = rand(); double b = ((double) a)/
((double) RAND_MAX);
•  b equals correct value

- Type conversion rules:
•  int/int → int	

•  int/double → double	

•  double/int → double	

•  double/double → double

Programming Concepts

•  Numbers generated by rand() not really random; same
sequence every time

•  Change seed for random number generator with void srand
(unsigned int seed)

•  Datatypes:
- For a lot of darts, need larger datatype than int or risk

overflow
- On some computers (varies by platform):

Data Type Range

int -32,768 — +32,767

long int -2,147,483,648 —
+2,147,483,648

unsigned long int 0 — +4,294,967,295

56

Parallelization Strategies

• What tasks independent of each other?

• What tasks must be performed sequentially?

• Using PCAM parallel algorithm design strategy

Partition

•  “Decompose problem into fine-grained tasks to
maximize potential parallelism”

•  Finest grained task: throw of one dart

•  Each throw independent of all others

•  If we had huge computer, could assign one throw
to each processor

57

Communication

“Determine communication pattern among tasks”

•  Each processor throws dart(s) then sends results back to
manager process

Agglomeration

“Combine into coarser-grained tasks, if necessary, to
reduce communication requirements or other costs”

•  To get good value of π, must use millions of darts

• We don’t have millions of processors available

•  Furthermore, communication between manager and
millions of worker processors would be very
expensive

•  Solution: divide up number of dart throws evenly
between processors, so each processor does a share
of work

58

Mapping

“Assign tasks to processors, subject to tradeoff between
communication cost and concurrency”

•  Assign role of “manager” to processor 0

•  Processor 0 will receive tallies from all the other
processors, and will compute final value of π

•  Every processor, including manager, will perform
equal share of dart throws

Bibliography/Resources

•  Heath, Michael T. (2006) Notes for CS554: Parallel Numerical
Algorithms, http://www.cse.uiuc.edu/cs554/notes/index.html

•  Kernighan, Brian W. and Dennis M. Ritchie. The C
Programming Language, 2nd ed. Upper Saddle River, NJ:
Prentice-Hall, 1988.

•  C: The float and double Data Types and the sizeof Operator
http://www.iota-six.co.uk/c/b3_float_double_and_sizeof.asp

•  C Data types http://www.phim.unibe.ch/comp_doc/c_manual/C/
CONCEPT/data_types.html

59

Appendix: Better Ways to Compute π

•  Look it up on the internet, e.g. http://
oldweb.cecm.sfu.ca/projects/ISC/data/ pi.html

• Compute using the BBP (Bailey-Borwein-Plouffe)
formula

•  For less accurate computations, try your programming
language’s constant, or quadrature or power series
expansions

€

π =
4

8n +1
−

2
8n + 4

−
1

8n + 5
−

1
8n + 6

n= 0

∞

∑ 1
16

n

Appendix: Better Ways to Generate
Pseudorandom Numbers

•  For serial codes
- Mersenne twister
- GSL (Gnu Scientific Library), many generators available

(including Mersenne twister) http://www.gnu.org/
software/gsl/

•  For parallel codes
- SPRNG, regarded as leading parallel pseudorandom

number generator http://sprng.cs.fsu.edu/
- PPRNG, Bill Cochran’s new parallel pseudorandom

number generator, supposedly superior to SPRNG http://
runge.cse.uiuc.edu/~wkcochra/pprng/

